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We prove spatial analyticity for solutions of the stochastically forced Navier–
Stokes equation, provided that the forcing is sufficiently smooth spatially. We
also give estimates, which extend to the stationary regime, providing strong
control of both of the expected rate of dissipation and fluctuations about this
mean. Surprisingly, we could not obtain non-random estimates of the exponen-
tial decay rate of the spatial Fourier spectra.
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1. INTRODUCTION

Consider the incompressible Navier–Stokes equations driven by a white in
time stochastic forcing f(x, t):

“u
“t
+u ·Nu+Np=n Du+f (1)

N ·u=0,

where n is the viscosity and p the pressure. Though some of our statement
can be translated to short time statements for 3D flows, we are mainly
concerned here with statements about the long time behavior of 2D flows.
We begin by discussing a useful caricature of 2D flows which helps

motivate our results. Imagine a forcing concentrated on the large scales.



First notice that the dissipation in the system is due to the n Du term while
the forcing keeps the systems from relaxing to zero, the globally attracting
fix point of the unforced system. If the viscosity, and hence the dissipation,
is small then the viscous term only acts on very small scales. In addition,
if the forcing is restricted to large scales then there is a clear separation
between the forced scales and the dissipating scales. This intermediate
region is refereed to as the inertial range and is characterized by algebraic
decay of the magnitude of the Fourier coefficients with increasing wave
number. Over this inertial scale ‘‘energy’’ is essentially neither dissipated nor
injected. The caricature states that because of the conservation of enstrophy
and energy, vorticity is transported to small scales to be dissipated while
energy is transported upscale to compensate for this flux to small scales.
For a more complete exposition see refs. 1 and 2. This paper concentrates
on the two dimensional periodic setting. The exact features of the story
differ in other settings such as the whole space or a domain with boundary.
However, the properties of the dissipation rate are likely similar.
This note is concerned with characterizing the scale at which the dis-

sipation starts. In contrast to the inertial scales, in the dissipative scales the
size of the kth Fourier mode decays exponentially as the wave number k
increases. As such, it is the character of the dissipative scales which ensures
the spatial analyticity of the velocity field. In characterizing the dissipative
scale rigorously there are at least two, often opposing, points of view. One
can try to make the bounds as sharp as possible so that they give the best
reflection of the ‘‘Truth.’’ On the other hand, one can try to maintain the
general nature of the estimates while giving strong analytic control over the
properties of various quantities in the estimate. Since we see our rigorous
estimates mainly as a tool in other rigorous investigations, we take the
second route. In particular, we do not claim that our estimates correctly
capture the scaling of the dissipation rate relative to the viscosity or the
structure of the forcing. If fact, our introduction of c in equation (10) pro-
duces estimates which scale inferior to those obtained by preceding directly
from (8). However a straightforward assault on this equations currently
eludes the author and hence the simpler treatment including the c is
presented here.
The core ideas of this paper date back to refs. 3 and 4. The specific

structure of the argument is similar to that in ref. 5. One of the points of
this note it that this structure is well suited to the stochastic setting.
It is extremely fitting that this note is dedicated to Yakov Sinai. It was

in collaboration with him that the author first explored the issues raised in
this paper. In fact a number of the theorems in this paper are similar in
statement to those proved in ref. 6 which was written under his supervision.
It is also with pleasure that I also dedicate this paper to Professor Ruelle.
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I have learned much from his papers and expect to continue doing so for a
long time to come.
As mentioned, the results in this note are an improvement over very

similar results in ref. 6 obtained by different techniques. In particular, this
work does not separate off the linear part of the equation. This splitting
lead to weaker control of the fluctuations in the previous work. More
comments on the relationship between the various results can be found
after the statement of the main theorem and in the conclusion. A different
take on similar questions was presented in ref. 7. There the control was less
explicit and strong, but the scaling relative to the parameters much better.

2. THE SETUP AND MAIN RESULTS

It is convenient to rewrite (1) as an Itô equation on the space of
divergence free vector fields, thereby eliminating the need for the condition
N ·u=0. In addition, we restrict ourself to the 2D torus T2. This makes
direct calculation in the Fourier basis possible.
Letting Pdiv denote the projection onto the space of divergence free

vector fields, we will work on the Sobolev spaces

H r=3u=(u(1), u (2))= C
k ¥ 2pZ2

uke ik ·x where uk=(u
(1)
k , u

(2)
k ),

u0=0, k ·uk=0,C
k

|k|2r |uk |2 <.4 .

We will write L2 for H0. Projecting (1) onto L2 produces

du(x, t, w)+nL2u dt=B(u, u) dt+dW(x, t, w)

u(x, 0)=(u (1)(x, 0), u (2)(x, 0)) ¥ L2
(2)

where L=`Pdiv(−D), B(u, v)=Pdiv(u · v). W(x, t, w) is a white in time
random field defined by

W(x, t, w)= C
k ¥ 2pZ2

ske ik ·xwk(t)

with w=(wk)k a collection of standard i.i.d Wiener processes on a proba-
bility space (W,F,Ft, P, ht). We associate W with the canonical space
generated by all of the dwk(t). F and Ft are respectively the associated
global s-algebra and filtration generated by W(t). Lastly, ht is the shift
on W defined by ht dwk(s)=dwk(s+t). The sk=(s

(1)
k , s

(2)
k ) ¥ C×C set the
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amplitude of the forcing. They are chosen so that Pdivske ik ·x=0 to make
the forcing divergence free. To enforce the reality of the vector field, we
assume w−k(t)=wk(t) and sk=s−k. Lastly we make the following standing
assumption.

Assumption A1 (Standing Assumption). There exist fixed posi-
tive constants b0 and C0 so that

|sk | [ C0e−b0 |k|. (3)

With this standing assumption it is reasonable to expect that the
velocity field u is analytic in space. This is the simplest formulation of our
main theorem. More precisely, we have the following:

Theorem 1. If u(x, t, w)=;k uk(t, w) e ik ·x solves (2) and |u(0)|Hr
<. for some r > 52 then there exist almost surely finite stochastic processes
y(t, w) and h(t, w) defined on [0,.) such that

• y and h are continuous in time.

• y(t) > 0 for t > 0.

• |uk(t)| [ h(t) exp(− |k| y(t)) almost surely.

• y and h have moments which are uniformly bounded in time.

• y(t) and h(t) satisfy the simple differential equations given in (10)
and (9) respectively.

The requirement that |u(0)|Hr is finite is not troublesome as the esti-
mates in Appendixes B and D show that the higher Sobolev norms are
finite at any moment of time after the initial one. Hence the estimates can
be started from there.
As stated, the first parts of Theorem 1 are no different than versions

contained in ref. 6. The various versions contained there differ in the
properties of the y and h produced. In particular the control over the
moments was not as strong. In most ways the proofs presented in this note
are an improvement over those in ref. 6. (To be precise, the statements in
ref. 6 require slightly better than exponential decay of the forcing however
the techniques of some of the proofs are quite similar to the ones exposed
here and could be modified to need only exponential decay.) Furthermore,
the proof in this text is more straightforward.
In Section 4, we prove Theorem 1 and develop many more character-

istics of y and h. In particular we give control on the size of the fluctuations
of y and h. In Section 5, we examine the implications of the previous anal-
ysis on the support of any invariant measure. We show that with high
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probability any invariant measure is concentrated on functions with a
certain decay rate or better (see Lemma 5.3). Though our goal was to
obtain strong rigorous analytic control, we also give some information
about how the y and h scale with the parameters. In Section 7 we show that
asymptotically in time

Ey \ C
n
3
2

C0+C1
n
3
2
b0
+`E |L ru|3L2

.

Here the constants C, C1 and C2 are independent of the viscosity and the
forcing but do depend on the domain (and hence are not unitless). If one is
interested in the scaling as nQ 0 one obtains

Ey \ C
n
3
2

`E |L ru|3L2

This scaling is certainly not optimal. Similarly, we see from Propositions 4.3
or 4.4, that in the stationary regime

Eh [ C 1E |L
ru|3L2
n
+C0 2.

In Section 7, we discuss in more detail the scaling as nQ 0. However we
emphasis, that the point here was not to obtain estimates which scale
optimally. Rather we have endeavored to obtain estimates which have
easily controlled fluctuations. This is realized by the relatively straight
forward form of Eqs. (9) and (10).

3. ANALYTICITY AND GEVREY CLASS REGULARITY

The basic ideas of our technique date back at least to ref. 3. We
introduce the operator eyL which is defined by the Fourier multiplier ey |k|.
Since |eyLu|2L2=; e2y |k| |uk |2, if we succeed in proving that |eyLu|L2 < C then
we can conclude that |uk | < Ce−y |k|.
We now give a brief account of the concept of Gevrey class regularity

as it pertains to our problem. For a more complete account see refs. 5
and 8.
For s > 0, we define the Gevrey Class G s by the u ¥ C.×C. such

that there exists a r > 0 and a C <. so that for all x ¥ T2 and multindex
b ¥N2 one has

: “ |b|u(x)
“xb11 “x

b2
2

: [ C 1 b!
r |b|
2 s
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where b=(b1, b2), b!=b1! b2! and |b|=|b1 |+|b2 |. It is straight forward to
verify that G s is closed under multiplication, differentiation, and composi-
tion. Also G s1 …G s2, if s1 < s2.
In light of the definition, it is not surprising that we can connect the

above concepts with the idea of smoothness as characterized by Sobolev
norms. In ref. 5, one finds the following result:
Fix s > 0 and r \ 0. Then u ¥G s if and only if there exists r > 0 and

C <., possibly depending on r, s, and u, such that for every n ¥N

|Nnu|Hr [ C 1
n!
rn
2 s.

Finally, we connect back with the operator eyL which was introduced
at the start of the section. If D(eyL

1/s
: H r)={u ¥H r : |eyL

1/s
u|Hr <.} then,

again from ref. 5, G s=1y > 0 D(eyL
1/s
: H r) for any r \ 0 and s > 0.

Hence the operator eyL
1/s
can be used to prove membership in G s. We

are mainly interested in s=1 as it corresponds to real analytic functions.
In the following, we will not work with eyL

1/s
but rather L reyL

1/s
for

some r > 52. This is so that our spaces are Banach algebras. In particular in
refs. 5 and 9, it is proved that if s \ 1, y > 0, r > d2 then H r is an Banach
algebra and

|L reyL
1/s
(uv)|Hr [ C(r, d) |L reyL

1/s
u|Hr |L reyL

1/s
v|Hr.

4. THE HEART OF THE ANALYSIS

Throughout this section, we will work with an arbitrary Galerkin
approximation u (N) defined by projecting (2) onto the Fourier modes with
wave number |k| [N. u (N)(x, t)=; |k| [N uk(t) e ik ·x solves

du (N)=[− nL2u (N)+PNB(u (N), u (N))] dt+ C
|k| [N

sk dwk(t). (4)

Working with the Galerkin approximation removes the question of the
fitness of terms like |L reyLu|L2 in intermediate steps. Initially we must use a
finite Galerkin approximations in statements like (5) below, as we do not
know if they are finite for the full solution. However, from the start all of
the estimates we obtain are independent of the choice of N used to define
Galerkin approximations. We need only use the Galerkin approximation to
make the manipulations possible. Since all of the estimates are uniform in
the order of the Galerkin approximation, we pass to the limit trivially at the
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very end of our argument. As nothing will depend on N, we suppress it
from our notation in the name of readability.
The presentation here closely parallels that in ref. 6 which in turn

closely parallels the presentation in ref. 5. Relative to ref. 6 there are some
important differences which give estimates which are more uniform in time.
Recalling that by definition

|L reyLu|2L2=C
k
|k|2r |uk |2 e2y |k| (5)

and allowing the possibility that y depends on time (but has finite first
variation in time), Itô’s formula implies that

d |L reyLu|2L2

=5−2n |L r+1eyLu|2L2+2OPNL
reyLB(u, u), L reyLuPL

2

+2
dy
dt
|L r+

1
2eyLu|2L2+ C

|k| [N
|k|2r e2y |k| |sk |26 dt+2OL2re2yLu, dW(t)PL

2.
(6)

Next we use a lemma proved in ref. 5 to estimate the nonlinear term.

Lemma 4.1. Let u ¥D(L reyL) with r > d2+
3
2 , such that u is mean

zero and N ·u=0 then

|OL reyLB(u, u), L reyLuPL
2 | [ C |L ru|3L2+yC |L

reyLu|L2 |L r+
1
2eyLu|2L2

for some C > 0 independent of y.

Writing Eq. (4) in integral form, we use this lemma to produce

|L rey(t) Lu(t)|2L2

[ |L rey(0) Lu(0)|2L2+F
t

0
2OL2re2y(s) Lu(s), dW(s)PL

2

+F
t

0
2 5− n |L r+1ey(s) Lu(s)|2L2+C

k

|k|2r e2y(s) |k| |sk |2+C |L ru(s)|
3
L
2

+yC |L rey(s) Lu(s)|L2 |L r+
1
2ey(s) Lu(s)|2L2+

dy
dt
|L r+

1
2ey(s) Lu(s)|2L26 ds.
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As u is mean zero, the Poincaré inequality implies that

|L r+1eyLu|2L2 \ 2p |L
r+12eyLu|2L2 \ 4p

2 |L reyLu|2L2

and hence,

|Lrey(t) Lu(t)|2L2

[ |Lrey(0) Lu(0)|2L2+F
t

0
2 5−pn+yC |Lrey(s) Lu(s)|L2+

dy
dt
(s)6 |Lr+12ey(s) Lu(s)|2L2 ds

+F
t

0

52C |Lru(s)|3L2−4np2 |Lrey(s) Lu(s)|2L2+C
k
|k|2r e2y |k| |sk|26 ds

+F
t

0
2OL2re2y(s) Lu(s), dW(s)PL

2. (7)

Up to now we have made no restrictions on the y dynamics other than it
should have finite first variation in time. If we chose the dynamics such
that

dy
dt
−pn+yC |L reyLu|L2 [ 0 (8)

then the first integral in (7) can be neglected. For the moment, we assume
this can be done and see what the implications would be. Continuing under
this assumption, we have

|L rey(t) Lu(t)|2L2 [ |L
rey(0) Lu(0)|2L2

+F
t

0
[2C |L ru(s)|3L2−4np

2 |L rey(s) Lu(s)|2L2+fr(y)] ds+N(s)

where fr(y)=;k |k|2r e2y |k| |sk |2, dN(s)=−2p2n |L reyLu|2L2 ds+dM(s) and
dM(s)=OL2re2yLu(s), dW(s)PL

2. In light of the assumptions on the sk, it is
straight forward to verify that fr(y) is strictly increasing in y and finite as
long as y < b0. Let us further assume that we can pick y dynamics which so
that y(t) [ b1 < b0 almost surely for all t \ 0 and some fixed b1. Under this
assumption fr(y) [ f

g
r=fr(b1) and hence if we define the stochastic

process h(t) by the Itô SDE

dh(t)=[−2p2nh(t)+2C |L ru|3L2+fr(y)] dt+dN(t) (9)
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then |L rey(t) Lu(t)|2L2 [ h(t) almost surely. All that remains is to specify the
dynamics of y. As long as (8) and y(t) [ b1 are satisfied, we are free to pick
almost any dynamics we wish. For any fixed c \ 0, consider the dynamics

dy
dt
+cy(c+`h)=pn. (10)

Begin by noticing that, because of the n on the right hand side, y(t) > 0 as
long as y(0) \ 0. Second notice that because y \ 0 and h(t) \ 0 we have
that

dy
dt
−pn+Cy |L reyLu|L2 [

dy
dt
−pn+Cy`h [

dy
dt
−pn+Cy(c+`h).

We conclude that the choice of y dynamics given by (10) satisfies the con-
dition in (8). To satisfy the remaining condition on y, we need a bound
from above.

Proposition 4.2. If c > 0 then,

y(t) [ y(0) exp{−Cct}+
n

Cc
(1− exp {−Cct})

y(t) \ y(0) exp 3 −Ct 5c+= 1
t
F
t

0
h(t) dt64

+n F
t

0
exp 3 −C(t−s) 5c+= 1

t−s
F
t

s
h(t) dt64

almost surely. And

Ey(t) \ y(0) exp 3 −Ct 5c+= 1
t
F
t

0
Eh(t) dt64

+n F
t

0
exp 3 −C(t−s) 5c+= 1

t−s
F
t

s
Eh(t) dt64

Proof. Both follow from integrating (10) using the variation of
parameter formula. The first is obtained by neglecting the integral contain-
ing `h. The second follows from the fact that 1t > t0 `h [`1t > t0 h by
Jensen’s inequality. The third follows from the second by repeatedly using
Jensen’s inequality to move the expectation inward. L
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From the first part of this proposition, it is clear that if c > n
Cb1
then

y(t) [ b1 almost surely. From now on we assume that this condition holds.
In light of the above discussion, we have proved the following theorem

which implies Theorem 1.

Theorem 2. Assume that the sk are such that the standing assump-
tion (1) holds. Fix an r > 52 and a c \

n
Cb1
where b1 < b0. If y(0) \ 0 and

|L rey(0) Lu(0)|L2 <. then Theorem 1 holds for y and h defined by (10) and
(9) respectively.

We now concentrate on extracting the properties of the system defined
by (9) and (10) which will in turn imply statements about the regularity of
the solution u(t) of the stochastic Navier–Stokes equation.
In practice, we will mainly be interested in the case when y(0)=0 and

hence |L rey(0) Lu|L2=|L ru|L2. This assumptions simplifies some formuli which
follow, but is not truly necessary.

Proposition 4.3. If y(0)=0 then,

Eh(t) [ Eh(0) e−2pnt+F
t

0
2Ce−2pn(t−s)E |L ru(s)|3L2 ds+K0(1−e

−2pnt)

where K0=
fr*
2pn. Notice that since b1 < b0, f

g
r is O(C0) regardless of the

other details of the sk’s. (C0 is the constant in the standing assumption.)
Hence K0 is always O(

C0
n ).

Proof. Conceptually the proof is straightforward. One simply
integrates (9) and takes its expectation. Because all of the integrands in the
Stiltjes integrals are positive one can exchange the expectation and the
integral in time. We would be done if we could then claim that the expected
value of integral against the semi-martingale dN is less than or equal to
zero. Specifically we would like to claim that

E F
t

0
e−2pn(t−s) dN(s) [ 0.

We see from the definition of N that this integral is made up of two terms.
The first is the regular Stieltjes,

−E F
t

0
e−2pn(t−s) |L rey(s) Lu(s)|2L2 ds
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which is clearly less than or equal zero and hence can be neglected. This
leaves only the expected value of the Itô integral

e−2pntEM̃(t)=e−2pntE F
t

0
e2pnsOL2re2y(s) Lu(s), dW(s)PL

2.

This expected value is zero as long as we know that the expected value of
the quadratic variation of M̃(t) is finite. Unfortunately, the quadratic
variation

[M̃, M̃]=F
t

0
e4pns C |k|4r |sk |2 e4y |k| |uk |2 [ f̂r(b1) F

t

0
e4pns |L rey(s) Lu(s)|2L2 ds

(11)

and hence it is naturally bounded exactly by the term we are trying to
control with h(t). (Here f̂r(y)=max |k|2n e2y |k| |sk |2. This is finite because
y [ b1 < b0 almost surely.) Fortunately there is a standard way around
this quandary. For any U > 0 we introduce the stopping time T=
inf{s: |L rey(s) Lu(s)|2L2 \ U} and the stopped process u

T(t)=u(TN t). Here
TN t=min(T, t). As long a t < T, uT still satisfies (4). Because of the defi-
nition of the stopping time, (11) is clearly finite if u is replaced with uT.
Hence the proposition holds for a hT(s) defined by

dhT(t)=[−2p2nhT(t)+2C |L ru|3L2+fr(y)] dt+dN
T(t) (12)

where dNT(s)=−2p2n |L reyLu|2L2 ds+dM
T(s) and dMT(s)=OL2re2yLuT,

dW(s)PL
2. Since u(t) is continuous in time and finite almost surely, TN t

converges to t as the cut-off UQ.. Hence, uTQ u as UQ.. Since the
bound obtained on hT is independent of U, we can transfer the bound to h
by taking the limit as UQ.. L

With Proposition 4.3 in hand, we know that the expectation of
quadratic variation [M, M](t) is finite. From this fact, one obtains
strong control of N(t). The key to this control is to observe that N has
a particular form. N−M has finite first variation and d(N(t)−M(t))
[ − A2 d[M, M](t) where A=2n/f̂

g
r . A standard exponential martingale

estimate then implies that P{sups [ t N(s) > b} [ e−bA. From this exponen-
tial control of the deviations many useful facts follow. For instance, it is
straightforward to prove that limtQ.

N(t)
t =0 almost surely (see Appendix A

for an analogous calculation or ref. 10 for an example in just this setting).
This coupled with the fact thatfr(y) \ 0 produces the following proposition.
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Proposition 4.4. With probability one

2C
2pn
lim
tQ.

1
t
F
t

0
|L ru|3L2 ds [ lim

tQ.

1
t
F
t

0
h(s) ds [

2C
2pn
lim
tQ.

1
t
F
t

0
|L ru|3L2 ds+K0

(13)

where K0 is the constant from Proposition 4.3.

This is already useful, but we can do better. Integrating up (9)
produces

h(t)=h(0) e−2p
2
nt+2C F

t

0
e−2p

2
n(t−s) |L ru(s)|3L2 ds

+
C1
2p2n

(1−e−2p
2
nt)+F

t

0
e−2p

2
n(t−s) dN(s).

Hence d[N(t)−M(t)] [ − A2 d[M, M](t) almost surely. Thus setting Ñ(t)
=− A2 [M, M](t)+M(t) , we have that > t0 e−2p

2
n(t−s) dN(s) [ > t0 e−2p

2
n(t−s)

dÑ(s) and Lemma A.1 implies

Ñ(t)=−
A
2
[M, M](t)+M(t) [

e1f̂g
r

2n
[K+2 log(2p2nt+1)]

with at least probability 1− p
2

6 e
−K. Hence, if we define

gexp(t, K)=h(0) e−2p
2
nt+
C
p2n
gr(t, K)

3
2

+
C1
2p2n

(1−e−2p
2
nt)+
e1f̂g

r

2n
[K+2 log(2p2nt+1)]

where gr is defined in Corollary D.3, then we have the following lemma.

Lemma 4.5. With at least probability 1− p
2
2 e

−K, h(t) [ gexp(t, K) for
all t \ 0.

Notice that at fixed time gexp(t, K) grows like K
3
2 (r+1). And for fixed K

it grows like [2 log(n2 t+1)]
p in t for some p \ 1.

5. IMPLICATIONS FOR INVARIANT MEASURES

We now wish to show that the estimates in the previous section and in
the Appendix, imply that any invariant measure within a certain class must
be quite regular. Recall that we defined En=; |k|2n |sk |2. The finiteness of
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the En and Assumption A.1 will be the main ways of characterizing the
smoothness.
We are interested in deriving regularity statements characterizing any

stationary measures which might exist. As the standard treatment of exis-
tence and uniqueness (11, 12) assumes that the initial data is in L2, we will
assume that for any invariant probability measure m under discussion there
exists a U … L2 such that m(U)=1. For the same reason, we always assume
E0 <.. In this setting, the following lemma was proved in ref. 10.

Lemma 5.1. Consider any invariant probabilitymeasure, as described
above.

(1) All energy moments are finite. In fact for any p \ 1 there exist a
constant Cp <. such that

F
L
2
|u|2p

L
2 dm(u) < Cp.

In particular C1=
E0
2n.

(2) The first moment of the enstrophy is finite. Therefore

F
L
2
|Lu|2L2 dm(u)=

E0

2n
.

In addition, if the forcing is such that E1 <. then

F
L
2
|L2u|2L2 dm(u)=

E1

2n
and F

L
2
|Lu|2p

L
2 dm(u) < C1(p) <.

for all p \ 1.

We now expand on these ideas. Let m be an invariant measure as
above. Let u(0) be the random variable obtained by starting at time t0 < 0
with initial data distributed according to m. Since m is an invariant measure

F 1|Lu(t0)|
2
L2 >

E1
n
+K(u) dm(u)=F E1|Lu(0)|2L2 >

E1
n
+K(u) dm(u).

Next notice that

F E1|Lu(0)|2L2 >
E1
n
+K(u) dm(u) [ P 3 |Lu(t0)|

2
L
2 e−n |t0| >

K
2
4

+P 3 |Lu(0)|2L2−|Lu(t0)|
2
L
2 e−n |t0| >

E1

n
+
K
2
4 .
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Since > |Lu|2L2 dm(u) <., we estimate the first probability by Chebechev’s
inequality producing

P 3 |Lu(t0)|
2
L
2 e−n |t0| >

K
2
4 [ 2e

−2n |t0|

K
F |Lu|2L2 dm(u).

Using Lemma B.2, we know that the second probability decays exponen-
tially like ce−ncŒK for some positive c and cŒ which are independent of t0
and n. Taking t0 Q −., we obtain the following lemma:

Lemma 5.2. For some positive c and C independent of n and m,
> exp(cn |Lu|2L2) dm(u) < C <..

In the same manner, we can obtain estimates implying that any
invariant measure is supported on the space of analytic functions. We
define Uy, h={u: |uk | < he−y |k| for all k}, and U=1y > 0 1h > 0 Uy, h. Propo-
sition 4.2 ensures that m(U)=1. From the definition of y it is easy to see
that if one knows that h(t) < hg for some positive hg and all t ¥ [−T, 0]
where t0 ° −T < 0 then we know that y(0) > C

c+`h
*
where C is some positive

constant depending on T, n and c, but not hg. With analysis similar to that
used above for the enstrophy, but based on the estimates from Lemma 4.5,
gives the existence positive constants c and d so that the m(1y > 0 Uy, h

*
)

\ 1−ce−dh*. Combining these two observations gives the following lemma.

Lemma 5.3. There exists positive constants c, C, and d so that for
any invariant measure m(U C

c+`h
*

, h
*
) > 1−ce−dh*.

6. IMPLICATIONS FOR QUESTIONS OF ERGODICITY

We close by considering the implications of Theorem 2 on questions of
ergodicity. The first rigorous proofs of the ergodicity of Eq. (2) were
produced by ref. 13 and then extended by ref. 14. These results required
that the sk have decay bounded below by some algebraic power of |k|.
Since we now see that the natural decay of the |uk | is exponential is k, these
results seem to relay on the noise to overwhelm the natural fine structure of
the problem. This means that the noise set the relevant topology in the
function space allowing one to write densities relative to a fixed reference
measure. If in fact the true decay does fluctuate as y does this means that
the transition densities are note defined relative to a measure with a
common fixed decay. This seems troublesome. In ref. 15 the question of the
correct topology was sidestepped completely by working at low enough
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Reynolds number for the dynamics to be globally contracting. Finally in
ref. 10, a technique was developed which worked for any Reynolds number
and respected the fine scale structure of the nonlinearity with the mild
imposition of an ‘‘effective’’ ellipticity condition (see ref. 16). This method
also side stepped the question of topology by reducing the dynamics to an
equation with memory on Rn. Similar ideas were used to obtain similar
ergodicity results in ref. 17.

7. IMPLICATIONS FOR SCALING WITH v

As stated at the onset, our goal was not to obtain estimates which
scaled faithfully as n and the forcing strength were varied. Nonetheless it is
worth observing how the estimates we have obtained scale. Even with in
the framework, we have made some choices which make our estimates less
than optimal. In particular, our introduction of c in (10) was an expedient
choice to keep y less that b0 and hence remove any questions about the
fitness of fr(y) in (9). One could certainly obtain estimates which ensured
this without such a heavy-handed modification of (8); however, a simple
realization of this is presently out of authors reach.
We will work in a statistical steady state guarantied by ref. 11

(regardless if it is unique). Hence all expectations will be constant in time
and no dependence on the initial data remains. From Lemma 4.2, we see
that

Ey \ n F
t

0
exp{−C(t−s)[c+`Eh]} ds \

n

c+`Eh

Next we use the estimate of Eh from Proposition 4.3 and the facts that
c > C n

b1
and b1 < b2 to obtain

Ey \
n

C1
n
b1
+`C2

fr*
n+C3

E |Lru|3L2
n

.

To get an order of magnitude estimate we fix 2b1=b0 and recall that
fg
r=O(C0) to obtain (with new constants)

Ey \ C
n
3
2

C1 n
3
2

b0
+`C0+C2E |L ru|

3
L
2

. (14)

Note that in all of the above estimates the constants are not dimensionless
as the dependence on the domain still remains.
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Of course, if one is interested in the behavior of these estimates as
nQ 0 with a fixed forcing, one needs to compensate for the growth of
E |L ru|3L2 as nQ 0. For fixed sk’s as nQ 0,

Ey \ C
n
3
2

`E |L ru|3L2
.

Using the rough estimates of the growth of the E |L ru|3L2 from Section 4 in
the appendix one obtains Ey \ Cn

25
2 as nQ 0. This is known to not be

optimal. The rate obtained in ref. 7 is much better. Our reliance on |L ru|3L2
with r > 52 is likely the source of the problem . It is more difficult to get
control of these norms that for r [ 2 where the energy and enstrophy esti-
mates give better scaling estimates. However the point here was to obtain
estimates which provided easily managed control over the fluctuations of
the the constants. Equations (10) and (9) realize this global.

8. CONCLUSION

There are a number of methods which have been used to prove analy-
ticity of the 2D Navier–Stokes equations and related equations. The are
not all equal. This shows how one specific method from the recent litera-
ture is well-suited to the forced case where one is interested in the long term
behavior of the process. The formulation here leads to estimates which are
easier to control than those in ref. 6. However the estimates still suffer from
the deficiency which drove the author to produce three different proofs in
ref. 6. Namely the decay rate y is not asymptotically constant. It is surpris-
ing that a physical decay rate is random. This is likely an artifact of the
proof but its resilience to a number of different attacks makes it an
interesting open question. In fact, it was an attempt to answer this question
with a direct hands on calculation which lead to ref. 18.

APPENDIX A: A PROBABILISTIC ESTIMATE

Lemma A.1. Let M(s) be a continuous martingale with quadratic
variation [M, M](s) such that E[M, M] <.. Define the semi-martingale
N(s)=− a2 [M, M](s)+M(s) for any a > 0. If c \ 0 then for any b \ 0 and
T > 1b we have

P 3 sup
t ¥ [T− 1

b
, T]

F
t

0
e−c(t−s) dN(s) > e

c

b

a
K4 < e−K
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and

P 3F t
0
e−c(t−s) dN(s) < e

c

b

a
[K+a log(bt+1)] for all t \ 04 \ 1−e−Kz(a)

where z(a)=;.

k=1 k
−a. (Where if c=0 and b=0 then c/b=0.)

Proof. We begin with the case b > 0. Setting b(t)=e
c

b

a [C+
a log(bt+1)] we have

P 3F t
0
e−c(t−s) dN(s) < b(t) for all t \ 04

\ 1− C
.

n=1
P 3 sup

t ¥ [ n−1
b
, n
b
]

F
t

0
e−c(t−s) dN(s) \ b 1n−1

b
24 .

We estimate the terms in this summation by

P 3 sup
t ¥ [ n−1

b
, n
b
]

e−ct F
t

0
ecs dN(s) \ b(n)4

[ P 3 sup
t ¥ [ n−1

b
, n
b
]

F
t

0
ecs dN(s) \ b 1n−1

b
2 e cb (n−1)4

[ P3 sup
t ¥ [ n−1

b
, n
b
]

F
t

0
−
ae−cs

2
e2cs d[M, M](s)+ecs dM(s) \ b 1n−1

b
2 e cb (n−1)4

[ P3 sup
t ¥ [ n−1

b
, n
b
]

F
t

0
−
ae−

c

b
n

2
e2csd[M, M](s)+ecs dM(s) \ b 1n−1

b
2 e cb (n−1)4 .

Notice that thequadraticvariationof > ecs dM(s) isprecisely > e2cs d[M, M](s).
Also recall that a standard variation of the Kolmogorov–Doob martingale
inequality implies that for a continuous L2 martingale M̃, P{sup[0, t]−
A
2 [M̃, M̃]+M̃ > B} [ exp(−AB) (see refs. 19 and 20). Combining these
observations produces

P 3 sup
t ¥ [ n−1

b
, n
b
]

e−ct F
t

0
ecs dN(s) \ b 1n−1

b
24

[ exp 1 −ae− cb nb 1n−1
b
2 e cb (n−1)2=e

−C

na
.
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Taking a=0 gives the first quoted result. Summing this estimate produces
the second quoted result (recall that z(a)=;.

k=1 k
−a ).

When b=0, things are simpler. We need only consider the case when
c=0, otherwise the bound is trivially satisfied. If both c and b equal zero
then the statement reduced to P{supt N(t) >

1
a K} < e

−K. This is simply the
basic martingale estimate cited above. L

APPENDIX B: CONTROL OF ENSTROPHY

We begin by considering the stochastic version of the classical
enstrophy estimates. The proofs can be found in refs. 6 and 10.

Lemma B.1. For any p > 1,

E |Lu(t)|2L2 [ e
−2ntE |Lu(0)|2L2+

E1

2n
(1−e−2nt)

E |Lu(t)|2p
L
2 [ e−2ntE |Lu(0)|2p

L
2+C1 F

t

0
e−2n(t−s)E |Lu(s)|2(p−1)

L
2 ds

E1=; |k| 4p2 |k|2 |sk |2 and

|Lu(t)|2L2=|Lu(t0)|
2
L
2+E1(t− t0)

−2n F
t

t0
|Lu(s)|2L2 ds+2 F

t

t0
OL2u(s), dW(s)PL

2.

Using these lemmas and the probabilistic estimates from the last
section, we explore the long time behavior. Integrating up one half of the
dissipative term we obtain

|Lu(t)|2L2=|Lu(t0)|
2
L
2 e−n(t− t0)+

E1

n
(1−e−n(t− t0))+F(t) (15)

whereF(t)=−n > tt0 e
−n(t−s) |Lu(s)|2L2 ds+2 >tt0 e

−n(t−s)OL2u(s), dW(s)PL
2.Setting

M(t)=2 > tt0 OL
2u(s), dW(s)PL

2, we observe that if [M, M](t) denotes the
quadratic variation ofM(t) then

[M, M](t)=4 F
t

0
C |k|4 |sk |2 |uk(s)|2 ds

[ 4ŝ(1)2 F
t

0
C |k|2 |uk(s)|2 ds=4ŝ(1)2 F

t

0
|Lu(s)|2L2
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where ŝ(n)=`max |k|2n |sk |2. (Given our standing assumption on the sk

this is finite for all n.) Continuing, we have

− n F
t

t0
|Lu(s)|2L2 ds+M(t) [ −

1
2
n

2ŝ(1)2
[M, M](t)+M(t).

Combining this estimate with Lemma A.1 produces

P 3 sup
t ¥ [T− 1

n
, T]

F(t) >
2 |ŝ(1)|2 e1

n
K4 < e−K

and

P 3F(t) < 2 |ŝ(1)|
2 e1

n
[K+2 log(1+nt)] for all t \ 04 > 1−p

2

6
e−K.

Using these estimates produces,

Lemma B.2. With at least probability 1− p
2

6 e
−K, |Lu(t)|2L2 [ g1(t, K)

for all t \ 0 where

g1(t, K)=|Lu(0)|2L2 e
−nt+

E1

n
(1−e−nt)+

2ŝ(1)2 e1

n
[K+2 log (1+nt)]

for all t \ 0. We also have

P 3 sup
t ¥ [T− 1

n
, T]

|Lu(t)|2L2−|Lu(0)|2L2 e
−nt >

E1

n
+
2 |ŝ(1)|2 e1

n
K4 < e−K.

This lemma implies the following corollary.

Corollary B.3. If |Lu(0)|2L2 <. then E |Lu(t)|2p
L
2 <. for any p > 1

and t > 0.

APPENDIX C: A NONLINEAR ESTIMATE

Lemma C.1. For r \ 2, E > 0, and u ¥H r+1 the following holds

|OL ru, L rB(u, u)PL
2 | [

C
E2r−1

|Lu|2(r+1)
L
2 +E |L r+1u|2L2

for some C > 0.

Dissipative Scale of the Stochastics Navier–Stokes Equation 1175



Proof. This result is fairly standard. It is more or less the 2D version
of an estimate at the start of Chapter 4 of ref. 21 or Chapter 6 of ref. 2. We
give the basic outline for completeness. Start by observing that

|OL ru, L rB(u, u)PL
2 | [ C |Nu|. |L ru|

2
L
2.

In 2D if r \ 2, a Gagliardo–Nirenberg inequality gives

|Nu|. [ C |Lu|1−
1
r

L
2 |L r+1u|

1
r
L
2 .

By interpolation |L rL2u|L2 [ C |Lu|
1
r
L
2 |L

r+1

L
2 u|1−

1
r

L
2 . Combining these estimates

gives

|OL ru, L rB(u, u)PL
2 | [ C |Lu|1+

1
r

L
2 |L r+1u|

2− 1r
L
2

Lastly, we use ab [ ap/p+bq/q with p= 2r
2r−1 and q=2r to complete to

lemma. L

APPENDIX D: CONTROL OF HIGHER SOBOLEV NORMS

We now use the nonlinear estimate from the last section to obtain
estimates on the higher Sobolev. We begin by applying Itô’s formula to
uW |L ru|2L2=; |k|2r |uk |2 to obtain

d |L ru(s)|2L2=[−2n |L
r+1u|2L2+2OL

ru, L rB(u, u)PL
2+Er] ds

+2OL2ru(s), dW(s)PL
2

Recall that Er=; |k|2r |sk |2. If we restrict to the case when r \ 2, we can
use Lemma C.1 with E=n to control the nonlinearity. Doing so and
integrating up half of the remaining dissipation produces

|L ru(t)|2L2 [ |L
ru(0)|2L2 e

− n
2
t+
2Er
n
(1−e−

n

2
t)

+
C
n2r−1

F
t

0
e−

n

2
(t−s) |Lu(s)|2(r+1)

L
2 ds+F

t

0
e−

n

2
(t−s) dN(s) (16)

where dN(t)=− n2 |L
r+1u(t)|2L2 dt+dM(t) and dM(t)=2OL

2ru(t), dW(t)PL
2 .

We begin by establishing control on E |L ru(t)|2L2. We use the same
ideas used to obtain control of Eh(t) in Section 4 or that were used in refs.
10 and 15 to control the expected value of the energy, enstrophy and
various Sobolev norms. We take the expectation of (16). If we know that
the expectationof themartingale term is zero thenwewould obtain the desired
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bound. However, we do not know a priori that the quadratic variation of
this martingale has finite expectation. By introducing the stopping time
T=inf{t: |L ru(t)|2L2 \ U} we can define a stopped version of the process
uT(t)=u(tNT). For uT it is clear that the expected value of the quadratic
variation is finite. Since the obtained estimate is independent of the cut-
off U, we can take the limit as UQ. to obtain

Lemma D.1.

E |L ru(t)|2L2+F
t

0
Ee−

n

2
(t−s) |L r+1u(s)|2L2

[ E |L ru(0)|2L2 e
− n2 t+

2Er
n
(1−e−

n

2
t)+

C
n2r−1

F
t

0
e−

n

2
(t−s)E |Lu(s)|2(r+1)

L
2 ds.

Next we obtain some estimates bounding the growth of typical solu-
tions. Observe that

d[M, M](t)=4 C |k|4r |sk |2 |uk |2 dt

[ 4ŝ(r−1) C |k|2r |uk |2 dt=4ŝ(r−1) |L ru|
2
L
2 dt.

Hence

N(t) [ −
1
2

n

ŝ(r−1)
[M, M](t)+M(t)

so

P 3F t
0
e
n

2
(t−s) dN(s)[

e1ŝ(r−1)
n
5K+2 log 1n2

t
+126 for all t\ 04\ 1−p

2

6
e−K

and we have

Lemma D.2. With probability at least 1− p
2

6 e
−K

|L ru(t)|2L2−|L
ru(0)|2L2 e

− n
2
t+F

t

0
e−

n

2
(t−s) |L r+1u(s)|2L2 ds

[
2Er
n
(1−e−

n

2 t)+
C
n2r−1

F
t

0
e−

n

2
(t−s) |Lu(s)|2(r+1)

L
2 ds

+
e1ŝ(r−1)
n
5K+2 log 1n2

t
+126

for all t \ 0.
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Combining this lemma with Lemma B.2, produced

Corollary D.3. With at least probability 1− p
2

3 e
−K,

|L ru(t)|2L2+F
t

0
e−

n

2
(t−s) |L r+1u(s)|2L2 ds [ gr(t, K)

for all t \ 0 where

gr(t, K)=|L ru(0)|
2
L
2 e−

n

2 t+
2Er
n
(1−e−

n

2 t)+
2C
n3r−1

(1−e−
n

2
(t−s)) g1(t, K) r+1

+
e1ŝ(r−1)
n
5K+2 log 1n2

t
+126.
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